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Abstract synchronized checkpointing schemes [5,6] reduce the
overhead for coordination by taking advantage of

Traditional checkpointing and rollback recovery the loosely-synchronized checkpointing clocks and by
techniques for parallel systems have typically assumed bounding the message transmission delay. Indepen-
the communication pattern is specified by program be- dent checkpointing schemes replace the checkpoint
havior. In this paper we exploit the property that the synchronization by dependency tracking and possibly
communication pattern can often be changed at run- message logging [7-11] in order to preserve process
time without affecting program correctness. A schedul- auton'my. Rollback propagation in case of a fault is
ang algorithm for message processing and its imple- managed by searching for a consistent system state
mentation for reducing rollback propagation are de- based on the dependency information. Lower run-
scribed. The algorithm incorporates a user-transparent time overhead during normal execution is achieved
prioritized scheme based upon the run-time commu- by allowing slower recovery and maintaining multiple
nication and checkpointing history. Communication checkpoints. Our paper considers independent check-
trace-driven simulation for several parallel programs pointing schemes for possibly nondeterministic execu-
written in the Chare Kernel language demonstrates tion.
that the probability of rollback propagation can be Research on rollback recovery in multiple-processor
reduced at the cost of slight additional performance systems has typically assumed that the communica-
degradation. tion pattern is determined by program behavior and is

not otherwise controllable. Our approach is based on
the observation that the communication pattern (mes-

1 Introduction sage sending and processing) can often be determined
by the run-time support system in a user-transparent

Numerous checkpointing and rollback recovery way as well as by program behavior. This observa-
techniques have been proposed in the literature for tion has been used by others to reduce cache thrash-
parallel systems. Rollback propagation and the as- ing by means of array subscript analysis in nested
sociated domino effect [] have been the primary is- parallel loop constructs for dynamic thread schedul-
sue of concern in many of these techniques. Check- ing [12]. In a message-passing system, since the order
pointing for parallel and distributed systems can be in which the messages arrive at a processor can not
classified into three primary categories. Coordinated be assumed, changing the order of message processing
checkpointing schemes synchronize computation with will typically not affect program correctness. We will
checkpointing by coordinating processors during a show that the probability of rollback propagation in a
checkpointing session in order to maintain a consis- message-passing system can often be greatly reduced
tent set of checkpoints [2-4]. Rollback propagation is by reordering the processing of messages.
avoided at the cost of potentially significant perfor- Another contribution of this paper is the measure-
mance degradation during normal execution. Loosely- ment of actual rollback propagation for several par-
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The outline of the paper is as follows. Section 2 de- checkpoint upon receiving the rollback-initiating mes-
scribes the system model; the message scheduling algo- sage so that the communication information during
rithm is presented in Section 3; and Section 4 gives our the most recent checkpoint interval is also collected.
evaluation, the measurement of rollback propagation After receiving the responses, pi constructs the ez-
and comparisons. Section 5 discusses the limitations tended checkpoint graph [7] and executes the rollback
of our approach. propagation algorithm [15] to determine the local re-

covery line. A rollback-request message is sent to each
processor which then rolls back and restarts according

2 System Model and Checkpoint Con- to the local recovery line.

sistency There are two important situations concerning the

consistency between two checkpoints. In Fig. l(a), if
The system model considered in this paper is a processors pi and pj restart from CPik and CPjm re-

message-driven system consisting of a number of con- spectively, message m is recorded as "received but not
current processes for which all process communication yet sent". In a general model without the assumption
between processors is through message passing. Pro- of deterministic execution [16], message m becomes
cesses on the same processor share a single message an orphan message [6] and results in inconsistency be-
queue and belong to the same fail-stop recovery unit tween CPi and CPjm.
[8, 13]. Processes can be dynamically generated and
the request for the creation of a new process is sent
out as a job message to some processor according to CPik CP k
the load balancing strategy. When a processor is ready Pi Pi
to process a new message, it can pick any one in the m m
queue, depending on the scheduling algorithm, and
then invoke or create the appropriate process as re- pj p CRim
quested by the message. Although this model is usu- cpjm cpjm
ally applied to distributed-memory multicomputers, (a) (b)
recent work on parallel environments has shown that
the message processing model can also be efficiently
used on shared-memory multiprocessors [14]. Figure 1: Checkpoint consistency (a) message received

During normal execution, the state of each proces- but not yet sent; (b) message sent but not yet received.

sor is occasionally saved as a checkpoint on stable stor-
age. Let CPi denote the kth checkpoint of processor
pi with k > 0 and 0 < i < N - 1, where N is the num- Fig. 1(b) illustrates the second situation. The mes-
ber of processors. A checkpoint interval is defined to sage m becomes a lost message [6] according to the
be the time between two consecutive checkpoints on system state containing CPik and CPj,. By defin-
the same processor and the interval between CPk and ing the state of the channels to be the set of messages
CP,(k+l) is called the kth checkpoint interval. Each sent but not yet received, it has been proved [2, 5] that
message is tagged with the current checkpoint inter- checkpoints like CPik and CPjm can be considered
val number and the processor number of the sender. consistent if the corresponding state of the channels
Each processor takes its checkpoint independently and is also recorded. Koo and Toueg [3] assumed such a
updates the communication information table, or in- state is recorded at the sender side by some end-to-
put table [9], as follows: if at least one message from end transmission protocol. Another way of recording
the mth checkpoint interval of processor pj has been the channel state is through message logging. Pes-
processed during the previous checkpoint interval, the simistic logging protocol [17,18] can ensure such a
pair (j, m) is added to the table. A checkpoint space state is properly recorded at the receiving end 2 . As
reclamation algorithm [15] can be periodically invoked a result, we consider the situation in Fig. l(b) as con- Li
by any processor to reduce the space overhead. sistent. _J

When processor pi detects an error, it starts a
two-phase centralized recovery procedure [9]. First, a
rollback-initiating message is sent to every other pro-
cessor to request the up-to-date communication in- 2 The recovery protocol described above can also be modified .............

formation. Each surviving processor takes a virtual and applied to systems with optimistic logging [Il].
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3 Scheduling Message Processing P0 4-

3.1 Problem description m 0%%

In communication-induced checkpointing [19-221 a m2
checkpoint is taken on the sender side whenever com-

munication between two processors occurs. Because P2

the rollback of a processor does not affect any other
processor, rollback propagation is avoided. Our mes- (a)
sage scheduling algorithm is motivated by the above
schemes. The difference is, instead of inserting the Po

checkpoints based on a given communication pattern,
we control the communication pattern whenever pos- M
sible according to the fixed checkpoint pattern. The

receiver of each message tries to delay the processing m 2.1

of the message until the sender passes its next check-
point based on the predetermined checkpoint interval. P2

For example in Fig. 2(a), message mo enters the (b)
queue of processor pi at point A earlier than the mes-
sage n 2 at point B. By using a simple first-in-first-out Message Arrival N, Message Processing
(fifo) scheduling algorithm, P, will process m0 first
when it is ready to process a new message at point
C. However, since the order of processing these two Figure 2: Checkpointing and message processing (a)
messages does not affect program correctness in our normal fifo processing; (b) reordered processing for
model, m2 is a better candidate at point C because reducing rollback propagation.
its sender p2 has passed its next checkpoint. If in-
deed m2 is first processed and is finished at point D
(Fig. 2(b)), the sender of message mo will also have Although rn1 is processed after Pt has passed

passed its next checkpoint. When all the messages CP11 , a rollback of pa initiated between A and
can be processed in this way, there will be no rollback CPOI can still propagate the rollbacks to p, and
propagation. P2 through ma and inl. Such a situation is sim-

The following situations need to be considered for ilar to the indirect potential recaller (IPR) rela-
modifying the simple scheme described above. tionship described by Kim, et. al [23,24.

1. If the processing of m, completes at point D' in-
stead of D, the sender of m0 has not passed the P0 4.- -

checkpoint yet. If p, has to process ma in or- ...
der to maintain performance, the communication m0 0
pattern will no longer be free of rollback propaga-
tion. However, the delayed processing of message Pj \0 +

m0 does contribute to reducing the rollback prop- CPlo A CPil B C

agation probability because it reduces the chance
that an error in Po requires the rollback of Pi be- Figure 3: Processing irrelevant messages in terms of
cause of ma. rollback propagation.

2. Consider the case shown in Fig. 3. Suppose p, is
forced to process m 0 at point .4. It is clear that
any rollback initiated by Po between A and CPO, 3.2 The scheduling algorithm
will rollback mn0 and therefore mn . It then be-comes relevack an w thertemese m Is pronbe- Based on the above observations, we give the fol-comes irrelevant whether the m essage m'. is pro- l w n ei ii ncessed before CPo1 or after, lowing definition:

Definition: A message m in the queue of a processor
3. Fig. 4 illustrates the situation where the rollback p is safe if the immediate processing of m by p does

propagation involves more than two processors. not increase the probability of rollback propagation.



C 00  C ot 01a processor is ready to choose a new message for pro-
P0 , cessing, it will first choose one of the safe messages if

0 0there is one; otherwise, the unsafe message with the
4- !lowest hazard index will be chosen. With this schedul-

ing algorithm, the probability of rollback propagation
is not increased until it is necessary to keep the pro-

P2 cessors from idling.
CP 2 1  

B

3.3 Implementation

Figure 4: Rollback propagation involving more than
two processors. In order for the receiver to maintain the hazard in-

dices for the received messages, an additional piece of
information needs to be piggybacked on each message:

There are two types of safe messages: the time to the next checkpoint of the sender when the
message is sent. The receiver can then properly man-

Type 1: when at least one message from the ith age its message queue based on this information.
checkpoint interval of ps is processed by the re- Instead of keeping messages from different proces-
ceiver p, all the messages from the jth checkpoint sors in the same queue, each processor maintains an
interval, j < i, of p, are safe with respect to pr aryo u-uus n o ahpoesr ahms

(Fig 3)_array of sub-queues, one for each processor. Each mes-
(Fig. 3). sage enters its corresponding sub-queue if its hazard

index is not zero and is added to the highest-priority
Type 2: messages sent to another process on the safe queue if it is a safe message. Three additional data

same processor are always safe because the re-

covery unit is the processor and so the rollback structures are needed for proper queue management:

of the sender of such messages automatically rolls I. LastUpdate-_Time records the time at which
back the receiver. the most recent update of the time-to-next-

Definition: The hazard index associated with each checkpoint information was completed. It is

message m with respect to the receiver p is a measure

of the increased probability of rollback propagation 2. LastKnownCPNum[N is an array, with one
resulting from the immediate processing of m by p. entry for each processor, recording the most re-

By definition, the hazard indices of all safe mes- cent checkpoint interval number of every proces-
sages are zero. For each unsafe -nessage, the exact sor that is known to the local processor based on
hazard index might depend on the communication be- the communication history.
tween other processors, for example the message mi in
Fig. 4, and is in general impossible or difficult to cal- 3. LastProcessedCPNum[N] is an array recording
culate. Since the purpose of our work is to "reduce" the highest checkpoint interval number of the pro-
rollback propagation instead of "eliminating" it, we cessed messages from each processor. It is used
are interested in finding a feasible, low-overhead ap- for identifying Type-i safe messages.
proximation to the hazard index. In this paper, we
approximate the hazard index of an unsafe message The updates of hazard indices and priorities take
by "the time to the next checkpoint of its sender" In place only when a new message arrives (enqueueing)
particular, when the sender of a message m takes its or when the processor is about to process the next
next checkpoint after m was sent, the hazard index message (dequeueing). The operations performed on
of m reduces to zero and m is treated as a safe mes- the message queue for enqueueing and dequeueing are
sage. The actual implementation will be described outlined in Fig. 5 and Fig. 6, respectively. The aging
later. Experimental results in Section 4 support the operation updates the time-to-next-checkpoint infor-
use of such an approximation. mation of the last message in each non-empty unsafe

Our message scheduling algorithm is a prioritized sub-queue by the amount of the difference between
scheme based upon the hazard index which encapsu- current time and LasLUpdate-_Time. If the time to
lates the run-time communication and checkpointing the next checkpoint of a message becomes negative,
information. The higher the hazard index for a mes- all the messages in the same sub-queue are moved to
sage, the lower priority it is assigned. Therefore. when the safe queue.



/* message m from the ith checkpoint inter- /* p, is about to choose a message from
val of p, arrives at the message queue Q queue Q */
on Pr */ perform aging operation on Q;

perform aging operation on Q; if (safe queue is non-empty)
if (i < Last_KnownCPNum[p,]) choose a message from safe queue;

add m to safe queue; else {
else { choose the unsafe message m with the

if (i > Last_Known_CP_Num[p,]) smallest hazard index;
Last-KnownCPNum[p] = i; move the remaining messages in the same

if (i < LastProcessedCPNum[p]) sub-queue to the safe queue;
add m to safe queue; /* if m is from the ith checkpoint interval of

else Ps */
add m to unsafe sub-queue[p,]; LastProcessedCPNum[p,] = i.} La} rcse..Pu~ 8

Figure 5: Operations for enqueueing. Figure 6: Operations for dequeueing.

4 Experimental Evaluation
referred to as PRIoritized Message Process Schedul-

Our message scheduling algorithm is implemented ,ng (PRIMPS), to both types of queues and force the
in the Chare Kernel which has been developed as Kernel to dequeue a message from the job queue when
a medium-grain, machine-independent parallel Ian- there is no safe message left on the message queue. In
guage r14]. A program written in the Chare Ker- this section, we will compare our PRIMPS algorithm
nel language can run on both shared-memory and with two alternatives supplied by the Kernel: first-
distributed-memory machines such as Encore Multi- in-first-out (fifo) scheduling and last-in-first-out (lifo)
max, Sequent Symmetry, and the Intel iPSC/2 by- scheduling.
percube. Our experiments are on an eight-processor The four programs used in this study are Matrix
Multimax 510. multiplication, Circuit extraction, Knight tour and N

A Chare Kernel program is structurally similar to queen. The execution and checkpoint parameters for
a C program. It contains a superset of the C language each program are listed in Table 1. Each checkpoint
without global or static variables. Two Chare Kernel interval is arbitrarily chosen to be approximately 10
calls resulting in communication are: percent of the total execution time. Offsets between

corresponding checkpoints on different processors are
1. CreateChare() sends a message to request the cre- introduced to study the rollback propagation resulting

ation of a small process, called chare, and the pro- from asynchronous checkpointing. The ith checkpoint
cessing of the enclosed data by one of the subrou- of pj is taken at time i * T - j * A where T is the
tines, called entry codes, inside the created chare. checkpoint interval and A, the offset per processor, is

2. SendMsg() sends a message to an existing chare arbitrarily set to T/10. Our implementation of pe-

and requests the enclosed data to be processed by riodic checkpointing utilizes the interrupt service rou-
one r s the encoesed tine for UNIX alarm(T) system call as the checkpoint-
one of the entry codes. ing routine. Each checkpointing action is simulated by

There is no receive-message statement in a Chare Ker- inserting a constant delay (2 seconds). We assume a

nel program. All messages are sent to the copy of the technique for detecting the messages which do not re-

Kernel running on the destination processor and man- quire logging [11] is employed so that the overhead for

aged by the Kernel according to the scheduling algo- message logging is negligible.

rithm selected by the user. Messages sent by Create- We define several rollback statistics associated with
Chare() calls are kept in job queues and those sent by each communication pattern which encapsulate vari-
SendMsg() calls enter tho message queues. Each mes- ous costs for rollback recovery. They allow quanti-
sage queue has a higher priority than the correspond- tative comparison between different scheduling algo-
ing job queue. We apply our scheduling algorithm, rithms.



Table 1: Execution and checkpoint parameters of the Chare Kernel programs.

Benchmark fi Matrix] Circuit Knight Nf
programs I multiplication I extraction tour Queen

Number of processors 4 4 6 6
Execution time (sec) 290.07 252.51 280.15 1507.78

Checkpoint interval (sec) 30 30 30 150
Offset per processor (A) 3 3 3 15

Table 2: Rollback statistics.

i Benchmark Matrix Circuit Knight N
programs multiplication extraction tour Queen

rbcp lifo 5.42 1.25 30.50 30.61
fifo 2.54 1.15 31.72 32.19

PRIMPS 1.17 1.13 1.62 1.28

rbpe lifo 2.83 1.19 5.73 5.43
fifo 2.09 1.12 5.78 5.40

PRIMPS 1.13 1.10 1.53 1.23
ckpl lifo 0.537 0.045 0.906 0.841

fifo 0.224 0.019 0.906 0.833
PRIMPS 0.039 0.016 0.044 0.023

Execution lifo 290.07 252.51 280.15 1507.78
time (sec) fifo 299.50 256.88 282.50 1635.18

PRIMPS 304.56 254.34 278.50 1526.92
Performance degradation 4.99% 0.72% 0.00% 1.27%

1. The average of the total number of rolled-back different offsets. In all cases, our PRIMPS algorithm
checkpoints (rbcp) due to the rollback initiation reduces the cost of rollback recovery and the proba-
of a processor. bility of rollback propagation at the expense of less

than 5 percent performance degradation. Note that
2. The average of the total number of rolled-back pro- the performance degradation reported here is mea-

cessors (rbpe) due to the rollback initiation of a thpefracdgaaiorpredeeism-
prcessor. b dsured against the execution with lifo scheduling and
processor, with simulated checkpointing overhead. Therefore, it

3. The probability of rolling back at least one pro- represents the overhead required for performing the
cessor to some checkpoint before the most recent prioritized scheduling above the normal overhead for
checkpoint (ckp l). supporting checkpointing.

Communication traces were collected by intercepting One potential disadvantage of independent check-
the CreateChare() and SendMsg() calls, and recording pointing schemes is that slower recovery due to pos-
the time each message was dequeued. Communica- sible rollback propagation may make it unsuitable for
tion trace-driven simulation was then performed on real-time applications. Table 2 shows that the rollback
the traces to obtain the rollback statistics shown in cost (rbcp) and restarting cost (rbpe) for the PRIMPS
Table 2 and Fig. 7. All the reported numbers were algorithm are not only greatly reduced but also re-
computed by averaging over five runs. duced to numbers less than two. Since the minimum

The results show that the degree of rollback prop- value for both rbcp and rbpe is one (the rollback of
agation varies widely between different programs and the faulty processor), the statistics in Table 2 imply
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Figure 7: Comparison of rollback statistics as a function of the offset per processor A for the N Queen program.

that rollback recovery for independent checkpointing usage and the overhead for checkpointing and message
can be made faster by using the PRIMPS algorithm, logging may be higher.

The small percentage (less than 5%) of poten- Sometimes priorities are attached to the messages
tial rollbacks contributing to the non-zero ckpl's for in order to ensure correctness or achieve better load
the PRIMPS algorithm exist mostly at the starting balancing. Since our message scheduling algorithm
phase or the ending phase of the program execution can not schedule messages across different priority
where the number of messages is small. Although the groups, there are fewer messages available for schedul-
checkpoints are not explicitly synchronized, this result ing in each group and the algorithm will be less effec-
shows the set of most recent checkpoints still forms a tive.
consistent recovery line with high probability (higher
than 0.95) for the PRIMPS algorithm.

Fig. 7 shows that the degree of rollback propaga- 6 Concluding Remarks
tion becomes worse as the offset A increases for all
three algorithms. However, it is less sensitive to the In this paper, we have exploited the property that
offset for the PRIMPS algorithm. Therefore, our ap- reordering the message processing can change the com-
proach is particularly attractive for applications where munication pattern to reduce the occurrence of roll-
such offsets may exist and the synchronization cost for back propagation without affecting program correct-
always maintaining a consistent set of checkpoints is ness. The concepts of safe messages and hazard indices
prohibitively high. are introduced as the basis for our run-time prioritized

scheduling algorithm. Experimental results based on
the communication trace-driven simulation for several

5 Limitations parallel programs show that the probability of roll-
back propagation can be greatly reduced at the cost

Although the actual implementation of logging and of reasonable performance degradation.
checkpointing will have little impact on our compari-
son of rollback statistics, it does affect the performance Acknowledgement
degradation. For some applications, the PRIMPS al-
gorithm might tend to start more jobs than is nec- The authors wish to express their sincere thanks to
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